Guanine-rich telomeric sequences stimulate DNA polymerase activity in vitro.

نویسندگان

  • J Ying
  • R K Bradley
  • L B Jones
  • M S Reddy
  • D T Colbert
  • R E Smalley
  • S H Hardin
چکیده

Guanine-rich oligonucleotides and short telomeric DNA sequences can self-associate into G-quartet stabilized complexes. We discovered that this self-association can occur in sequencing reactions and that higher-order structures stimulate DNA polymerase to synthesize extended DNA strands. Base analogues were used to identify Hoogsteen base pairings as stabilizing forces in these stimulatory DNA structures. Scanning force microscopy confirmed that quartet-DNA was formed from these oligomers and that these extended, four-stranded structures could be bound by DNA polymerase. Since guanine quartet-stabilized structures are proposed to exist in vivo, such structures may stimulate DNA polymerization in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenopus laevis Ctc1-Stn1-Ten1 (xCST) Protein Complex Is Involved in Priming DNA Synthesis on Single-stranded DNA Template in Xenopus Egg Extract*

The Ctc1-Stn1-Ten1 (CST) complex is an RPA (replication protein A)-like protein complex that binds to single-stranded (ss) DNA. It localizes at telomeres and is involved in telomere end protection in mammals and plants. It is also known to stimulate DNA polymerase α-primase in vitro. However, it is not known how CST accomplishes these functions in vivo. Here, we report the identification and ch...

متن کامل

G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase

Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such...

متن کامل

Extreme conformational diversity in human telomeric DNA.

DNA with tandem repeats of guanines folds into G-quadruplexes made of a stack of G-quartets. In vitro, G-quadruplex formation inhibits telomere extension, and POT1 binding to the single-stranded telomeric DNA enhances telomerase activity by disrupting the G-quadruplex structure, highlighting the potential importance of the G-quadruplex structure in regulating telomere length in vivo. We have us...

متن کامل

Characterization of two Arabidopsis thaliana myb-like proteins showing affinity to telomeric DNA sequence.

Telomere-binding proteins participate in forming a functional nucleoprotein structure at chromosome ends. Using a genomic approach, two Arabidopsis thaliana genes coding for candidate Myb-like telomere binding proteins were cloned and expressed in E. coli. Both proteins, termed AtTBP2 (accession Nos. T46051 (protein database) and GI:638639 (nucleotide database); 295 amino acids, 32 kDa, pI 9.53...

متن کامل

G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II.

DNA sequences rich in runs of guanine have the potential to form G4 DNA, a four-stranded non-canonical DNA structure stabilized by formation and stacking of G quartets, planar arrays of four hydrogen-bonded guanines. It was reported recently that G4 DNA can be generated in Escherichia coli during transcription of plasmids containing G-rich sequences in the non-transcribed strand. In addition, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 50  شماره 

صفحات  -

تاریخ انتشار 1999